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Abstract

The problem investigated in this paper is a mode II crack extending at a uniform intersonic speed in an otherwise

unbounded elastic solid subjected to time dependent crack-face tractions. The fundamental solution for this problem is

obtained analytically, which is then used to construct the general solution for an intersonic crack subjected to arbitrary

time-dependent loading. For time-independent loading, this solution reduces to Huang and Gao�s [J. Appl. Mech 68

(2001) 169] fundamental solution. We have also studied two crack-face loadings that are of interest for engineering

applications.

� 2003 Published by Elsevier Science Ltd.
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1. Introduction

Indirect evidence of shear crack propagation in excess of shear wave speed was reported from obser-

vations of shallow crustal earthquakes (Archuleta, 1982; Beroza and Spudich, 1988; Wald and Heaton,

1994; Ellsworth and Celebi, 1999). However, it was the experiment of Rosakis et al. (1999) that stimulated

the resurgence of the recent studies on intersonic crack growth. The experiment provided a direct labo-

ratory observation of shear-dominated intersonic crack propagation along a weak plane in an otherwise

homogeneous polyester resin. The test indicated a crack propagation velocity faster than shear wave speed

cs and even close to longitudinal wave speed cl of the material.

The elastic response is likely to dominate in the case of intersonic crack growth. The elasticity studies
(Burridge, 1973; Andrews, 1976; Brock, 1977; Burridge et al., 1979; Freund, 1979; Simonov, 1983; Broberg,

1989, 1994, 1999; Freund, 1990; Gao et al., 1999; Huang et al., 1999; Yu and Suo, 2000) in the past 30 years

have fully explored the possibility of intersonic crack growth. The cracking mode dictates the possibility of

intersonic crack growth. No intersonic cracking regime exists for the mode III case. With only one (shear)

wave speed in anti-plane shear, the crack propagation under anti-plane shear is either subsonic or super-

sonic. For a mode I crack, the physically admissible stress singularity and the energy release rate vanish for
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all crack velocities above the Rayleigh wave speed, rendering a forbidden zone that covers the complete

intersonic and supersonic regimes. That leaves mode II cracking as the only candidate of intersonic crack

growth. For a mode II crack in an elastic medium, the stress singularity of intersonic cracks is less than 1/2

except at a special (radiation-free) crack-tip velocity of
ffiffiffi
2

p
cs, at which the energy release rate is finite and

non-vanishing. By adopting a finite cohesive zone extended from the crack tip, the crack-tip energy release

rate may remain positive for all intersonic speeds. Numerical studies on intersonic crack propagation by

finite element simulation or atomistic simulation (Needleman, 1999; Needleman and Rosakis, 1999;

Abraham and Gao, 2000; Gao et al., 2001; Geubelle and Kubair, 2001) confirmed the possibility of in-

tersonic crack growth under mode II case.

In all of those researches, the crack tip is confined to propagate along a predetermined straight-line path.

Without the confine, the mode I crack tends to oscillate and eventually branch at a specific propagation

speed, namely, only 0.35–0.5 cR. Rather than propagating straight ahead, an initially mode II crack would
curve continuously, or if necessary, kink abruptly to ensure that it remains a locally mode-I crack. The

natural tendency of growing cracks to propagate under strictly mode-I conditions in homogeneous

monolithic solids explains the lack of interest of early engineering researchers in mixed mode, or mode-II,

dynamic crack growth. In recent years this situation has changed drastically since there is an increasing

demand for specialized lightweight, high-strength structures made out of inhomogeneous (heterogeneous)

solids. Such solids include structural composites sandwich structures, bonded layered materials, and con-

tinuously graded solids. Many of these materials contain weak paths for crack debonding. If the fracture

mode along those weak paths is mode II in nature, a possibility of intersonic crack growth emerges. The
mode II cracks propagating along the predetermined path also exist in earthquake due to the high pressure

and the fault.

Until recently, most analytical studies were focused on the possibility of intersonic crack growth. Only

the simplest situations such as steady state or self-similar crack growth were explored. Seldom studied is

how loading history modulates the growth of an intersonic crack. Huang and Gao (2001) gave the transient

fundamental solution for an initial stationary crack propagating at a steady intersonic crack tip speed

under time independent loading. The solution can be utilized to construct the general solution for uniform

intersonic crack propagation subjected to an arbitrary initial equilibrium field. Antipov and Willis (2003)
obtained the fundamental solution for intersonic crack propagation in linear viscous solids. Huang and

Gao (2002) obtained the solution for a suddenly arrested crack that previously propagated at an intersonic

speed. The recent work of Guo et al. (2003) investigated suddenly decelerating or accelerating intersonic

cracks. Both works showed that the stress intensity factor does not instantaneously reach its equilibrium

value when an intersonically propagating crack tip changes its speed.

In this paper, uniform intersonic crack growth in an elastic medium is considered with attention focused

on time-dependent loading. The restriction on an intersonic cracking regime leaves the mode II case as the

only scenario to be considered. The fundamental solution is obtained in the same spirit as in Guo et al.
(2003). This fundamental solution for time-dependent loading is then used to construct the general solution

for arbitrary crack-face loadings. For the limiting case of time independent loading, our fundamental

solution reduces to the result obtained by Huang and Gao (2001). The solutions are also presented for

several time-dependent crack-face tractions. The method can also be applied straightforwardly to subsonic

crack growth, which has been extensively studied (e.g., Freund, 1972, 1990; Kostrov, 1975; Saraikin and

Slepyan, 1979; Willis, 1989; Slepyan, 2002).

2. Crack growth due to time-dependent loading

Consider a semi-infinite crack in an otherwise unbounded body. The material is linear elastic and iso-
tropic, with shear modulus l, Poisson�s ratio m, shear wave speed cs and longitudinal wave speed cl. A plane
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strain situation is assumed. The material surrounding the crack tip is initially free of loading. At time t ¼ 0,

the crack tip region is stressed due to either the passage of a stress wave or the sudden application of crack-

face tractions. Assume the loading is skew-symmetric so that the crack tip field is mode II. At the same

instant, the crack begins to extend at a constant intersonic speed tðcs 6 t6 clÞ within the crack plane.
The applied load can be viewed as a series of concentrated forces that begin to act on the crack surface at

different time. We first study a pair of concentrated shear forces on each side of the crack surfaces. The

forces are applied at an arbitrary location behind the crack tip, and their position and magnitude remain

unchanged thereafter. This solution is called the fundamental solution because the solution for more

general loadings can be constructed by its superposition.

The intersonic crack tip has a stress singularity �q that is generally different from the conventional

square-root singularity )1/2, where q is a function of the crack tip velocity t and is given by

q ¼ 1

p
tan�1 4alâas

2� t2

c2s

� �2 ¼ 1

p
tan�1 4alâas

ð1� âa2
s Þ

2
; ð1Þ

and

al ¼ 1

�
� t2

c2l

�1=2

; âas ¼
t2

c2s

�
� 1

�1=2

: ð2Þ

The focus of our study is on the stress intensity factor for intersonic crack growth, which is defined as

kII ¼ limr!0

ffiffiffiffiffiffi
2p

p
rqrxy

��
h¼0

, where r and h are the polar coordinates measured from the crack tip and h ¼ �p
are the crack faces.

2.1. Fundamental solution

The x–y coordinate system is introduced such that the crack lies along the x-axis and grows toward the

positive x direction at an intersonic speed t. At time t ¼ 0, the crack tip passes the point ðl; 0Þ, and a pair of

opposite unit concentrated shear forces dðxÞHðtÞ on the upper and lower crack faces begin to act at the

origin.

Only the upper half plane is considered due to the skew-symmetry. The application of the concentrated

force produces an elastic wave whose front moves at the longitudinal wave speed cl. Before the arrival of the
wave front, namely t < l=ðcl � tÞ, the crack tip is stress free. The elastic field assembles that of a concen-

trated force acts on the surface of an elastic half plane, which is a special case of the Lamb problem (Lamb,
1904). Using the method of integral transform, one arrives at the following surface displacement in x di-

rection (Achenbach, 1973)

uLx ðx; tÞ ¼ � 1

plc2s

Z t=jxj

1=cl

Im
ðc�2

s � r2Þ1=2

4r2ðc�2
l � r2Þ1=2ðc�2

s � r2Þ1=2 þ ðc�2
s � 2r2Þ2

" #
drHðclt � jxjÞ; ð3Þ

where Im stands for the imaginary part of a complex argument, and H is the Heaviside step function. The

above expression can be equivalently written as

uLx ðx; tÞ ¼
1

plc2s

Z t=x

1=cl

4r2ðc�2
s � r2Þðr2 � c�2

l Þ1=2 � ðc�2
s � 2r2Þ2ðr2 � c�2

s Þ1=2Hðr � c�1
s Þ

16r4ðr2 � c�2
l Þðc�2

s � r2Þ þ ðc�2
s � 2r2Þ4

dr ð4Þ

for 0 < x < clt.
Apparently, uLx depends on time t and coordinate x only through their ratio �tt ¼ x=t. This implies that any

given displacement level radiates out along the x-axis at a constant speed �tt. The above displacement can
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then be considered as a series of dislocations with the (half) Burgers vector duLx ð�ttÞ moving with the velocity
�tt. The derivative of uLx with respect to �tt is given by

duLx ð�ttÞ
d�tt

¼ � 1

plc2s�tt2
4t�2ðc�2

s � �tt�2Þð�tt�2 � c�2
l Þ1=2 � ðc�2

s � 2�tt�2Þ2ð�tt�2 � c�2
s Þ1=2Hðcs � �ttÞ

16�tt�4ð�tt�2 � c�2
l Þðc�2

s � �tt�2Þ þ ðc�2
s � 2�tt�2Þ4

ð5Þ

for 0 < �tt < cl.
When the longitudinal wave catches up with the crack tip, wave will be diffracted from the crack tip. The

Lamb problem is not the solution ahead of the intersonic crack tip anymore because the above surface

displacement does not satisfy the vanishing displacement condition, uxðx > lþ tt; y ¼ 0Þ ¼ 0. Similar to the

approach for a suddenly arrested crack (Huang and Gao, 2002) and for a suddenly decelerating crack (Guo

et al., 2003), we use the method of superposition to negate the above surface displacement ahead of the

intersonic crack tip. Let us assume the wave in the Lamb problem continues to propagate in its incipient

form, producing a displacement uLx in the x direction ahead of the crack tip. To negate uLx , a series of moving
edge dislocations are superposed at the propagating crack tip. A dislocation that has the (half) Burgers

vector duLx ð�ttÞ is emitted from the propagating crack tip at time l=ð�tt � tÞ and moves along the positive x
direction in the upper half plane with a velocity �tt, where �tt is between t þ l=t and cl. The same process,

namely the Lamb problem and a dislocation of the same (half) Burgers vector duLx ð�ttÞ emitted from the

crack tip, can be applied to the lower half plane. The Lamb problems in the upper and the lower half planes

are skew-symmetric with respect to the crack extension line, so are the problems involving two (half)

Burgers vectors propagating with the same velocity. With the skew-symmetry in mind, one may only

consider the upper half plane. Such a sequence of dislocation emission indeed negates the displacement uLx
ahead of the intersonic crack tip.

Guo et al. (2003) obtained the solution for an edge dislocation with the unit (half) Burgers vector being

emitted from an intersonic shear crack tip at time t ¼ 0 and then moving with velocity �tt faster than the

crack tip speed t. The stress intensity factor around the intersonic crack tip propagating with the velocity

tð< �ttÞ is given by

kint0 ðt; �tt; tÞ ¼ �4l

ffiffiffi
2

p

r
alâas

c3s ðcl � tÞ
t2ðt2 � c2RÞ

f ðtÞ t2 � c2s
c2l � t2

� �q
�tt2 � c2Rffiffiffiffiffiffiffiffiffiffiffiffi

�tt þ cl
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tt2 � c2s
p ffiffiffiffiffiffiffiffiffiffiffi

�tt � t
p s�½�1=ð�tt � tÞ�

s�ð0Þ
½ðcl � tÞt�q�1

;

ð6Þ

where the dependence on the time t, dislocation velocity �tt and crack tip speed t is shown explicitly, cR is the

Rayleigh wave speed, and the functions ðs�ðfÞÞ=ðs�ð0ÞÞ and f ðtÞ are given by

s�ðfÞ
s�ð0Þ

¼ exp

(
� f

p

Z þ1

1=ðclþtÞ

p
2



þ p

2

�
� tan�1 V�ðr; tÞ

�
H

1

t þ cs

��
� r
�
� H r

�
� 1

t � cs

���
dr

rðr � fÞ

)
;

ð7Þ

f ðtÞ ¼ exp

Z 1=ðcsþtÞ

1=ðclþtÞ

"8><
>: �

Z þ1

1=ðt�csÞ

#
tan�1

4alâasV�ðr; tÞ � 2� t2

c2s

� �2
4alâas þ 2� t2

c2s

� �2
V�ðr; tÞ

2
64

3
75 dr

pr

9>=
>;; ð8Þ
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and

V�ðr; tÞ ¼
2r2 � t2

c2s
r � 1

t

� �2h i2
4r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

c2
l

q ffiffiffiffiffiffiffiffiffiffiffiffi
t2

c2s
� 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ 1

cl�t

� �
r � 1

clþt

� �
r � 1

t�cs

��� ��� r � 1
tþcs

��� ���r : ð9Þ

When a dislocation is emitted from the intersonic crack tip at time l=ð�tt � tÞ (instead of t ¼ 0) with the

velocity �tt and (half) Burgers vector duLx ð�ttÞ, the crack tip stress intensity factor is kint0 ½t � l=ð�tt � tÞ;
�tt; t�duLx ð�ttÞ.
The stress intensity factor KF of the fundamental solution can be obtained by superposing the Lamb

solution and the solution for all dislocations. Since the Lamb solution has no stress singularity at the
propagating crack tip, the stress intensity factor KF is given by

KFðt; t; lÞ ¼
Z cl

tþl
t

kint0 t
�

� l
�tt � t

;x; �tt

�
duLx ð�ttÞ
d�tt

d�ttH t
�

� l
cl � t

�
; ð10Þ

where the dependence on the time t, crack tip velocity t and location of the concentrated load l is shown
explicitly. Substituting (5) and (6) into the above expression, and after some lengthy algebra, one has

KFðt; t; lÞ ¼
16

p

ffiffiffi
2

p

r
clcs

alâasf ðtÞ
ðt2 � c2RÞt2

t2 � c2s
cl þ t

� �q

H t
�

� l
cl � t

�



Z cl

tþl
t

s� � 1
�tt�t

� �
s�ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
cl � �tt

p ffiffiffiffiffiffiffiffiffiffiffi
�tt � t

p
�tt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tt2 � c2s

p
ð�tt2 � c2RÞ t � l

�tt�t

� �q�1

16ðc2l � �tt2Þð�tt2 � c2s Þ þ c2l c2s 2� �tt2

c2s

� �4 d�tt: ð11Þ

Extensive numerical evaluations indicate that the above stress intensity factor for the limit l ¼ 0 (or

equivalently for t � l=ðcl � tÞ) reduces to Huang and Gao�s (2001) fundamental solution for time inde-

pendent loading.
Fig. 1 shows the normalized crack tip stress intensity factor KFl1�q versus normalized time cst=l. The

concentrated shear force has a unit magnitude (of one) such that KFl1�q is dimensionless. The Poisson�s
ratio is m ¼ 1=3, and consequently the longitudinal wave speed of cl ¼ 2cs and a Rayleigh wave speed of

cR ¼ 0:93cs. The crack growth velocity is taken as t ¼ 1:4cs in Fig. 1. The stress intensity factor remains

zero until the longitudinal wave catches up the intersonic crack tip at the normalized time cst=l ¼ 1:67. The
stress intensity factor then starts to increase from zero, reaches a peak value at time cst=l ¼ 3:5 and

gradually diminishes to zero as the crack tip moves away and leaves the point force far behind. In fact, for

cst=l � 1, our fundamental solution approaches Huang and Gao�s (2001).

2.2. Arbitrary time-dependent crack-face loading

We investigate the stress intensity factor around an intersonic crack tip subjected to an arbitrary crack-

face shear loading. The material remains stationary and the crack tip is at the origin x ¼ 0, y ¼ 0 for time

t6 0. The equal and opposite general shear stress tractions T ðx; tÞ (with T ðx; t6 0Þ ¼ 0) are imposed on the

crack faces ðx < 0; y ¼ 0Þ at time t ¼ 0. At the same instant t ¼ 0 the crack tip starts to propagate at a

constant intersonic speed t towards the positive x direction. The shear stress traction acting on the crack
faces can be viewed as a series of time-independent shear concentrated forces that begin to act on the crack

faces at the appropriate time. This is because

T ðx; tÞ ¼
Z t

0

Z tt0

�1

dT ðx0; t0Þ
dt0

dðx� x0ÞHðt � t0Þdx0 dt0: ð12Þ
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In this equation, ðdT ðx0; t0Þ=dt0Þdðx� x0ÞHðt � t0Þ is a concentrated force that acts at the point ðx0; y ¼ 0Þ
after t ¼ t0. The fundamental solution for such a concentrated force has been obtained in Section 2.1.

Integrating the fundamental solution for different ðx0; t0Þ gives the solution for crack growth due to time-

dependent loading T ðx; tÞ. Specifically, the stress intensity factor is given by

KðtÞ ¼
Z t

0

Z tt0

�1

dT ðx0; t0Þ
dt0

KFðt � t0; t; tt0 � x0Þdx0 dt0; ð13Þ

where KF is given in (10). For a crack-face loading T that starts from a finite value at time t ¼ 0 (e.g.,

suddenly applied crack-face shear), T has a finite jump from T ¼ 0 at time t ¼ 0� to T ðx; 0þÞ at time t ¼ 0þ.

Accordingly (13) becomes

KðtÞ ¼
Z 0

�1
T ðx0; 0þÞKFðt; t;�x0Þdx0 þ

Z t

0

Z tt0

�1

dT ðx0; t0Þ
dt0

KFðt � t0; t; tt0 � x0Þdx0 dt0: ð14Þ

3. Two representative crack-face loadings

We present two examples of the crack-face loading to illustrate the analytical solution given in (13) and

(14).

3.1. An initial equilibrium field

Consider a semi-infinite mode II crack in an otherwise unbounded solid. The solid is subjected to an

initial equilibrium field before time t ¼ 0 and the crack tip is at the origin. At time t ¼ 0 the crack begins to

extend towards the positive x direction at a constant speed t in the crack plane. Freund (1990) pointed out

the process of crack propagation is essentially the negation of the equilibrium traction distribution during

dynamic crack growth, and obtained the fundamental solution for subsonic crack propagation under time-

independent loading. Huang and Gao (2001) obtained the fundamental solution for intersonic crack
propagation.

2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

K
F(

t,υ
,l)

l1-
q

cst/l

Fig. 1. The normalized stress intensity factor KFl1�q, versus the normalized time cst=l, in the fundamental solution for an intersonic

crack subjected to time-dependent loading. An initially stationary crack starts to propagate intersonically at time t ¼ 0, a pair of

concentrated shear force is applied at a distance l behind the crack tip on the crack faces at the same instant. Poisson�s ratio m ¼ 0:3, cs
is the shear wave speed, and the crack tip velocity t ¼ 1:4cs.
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The stress ahead of the crack tip in the equilibrium field is denoted by s�ðxÞ. This problem can be viewed

as the superposition of two sub-problems: (i) a static crack with the equilibrium stress distribution s�ðxÞ
ahead of the crack tip; and (ii) a crack propagating with an intersonic speed t and subjected to the negating

crack-face traction �s�ðxÞ. Therefore the T ðx0; t0Þ term in Eq. (13) is

T ðx0; t0Þ ¼ s�ðx0ÞHðtt0 � x0ÞHðx0Þ: ð15Þ

Its substitution into Eq. (13) gives the stress intensity factor of intersonic shear crack subjected to initial

equilibrium field as

KðtÞ ¼
Z t

0

s�ðtt0ÞKFðt � t0; t; 0Þtdt0: ð16Þ

An example of the initial equilibrium field is the classical, static K field, i.e., s�ðx0Þ ¼ K0=
ffiffiffiffiffiffiffiffiffi
2px0

p
, where K0

is the static stress intensity factor before crack propagation. The substitution of the above s�ðx0Þ into Eq.

(16) gives the dynamic stress intensity factor around an intersonic crack tip as K ¼ K0kðtÞðcstÞq�1=2
, where

kðtÞ is a non-dimensional function of the crack tip velocity t and is on the order of 1. It is clearly seen that,

as time increases, the dynamic stress intensity factor decrease monotonically (unless q ¼ 1=2 for t ¼
ffiffiffi
2

p
cs)

such that the intersonic crack growth is not sustainable under the initial classical, static K field.

3.2. Time-dependent concentrated load

Consider a semi-infinite crack along the negative x-axis, with the crack tip located once again at the
origin for time t6 0. A pair of time-dependent concentrated forces is applied at the origin at time t ¼ 0, and

its magnitude changes with time from zero. The term T ðx0; t0Þ in Eq. (13) takes the form

T ðx0; t0Þ ¼ dðx0ÞHðt0Þgðt0Þ; ð17Þ

where gð0Þ ¼ 0.
The stress intensity factor is obtained from (13) as

K ¼ 16

p

ffiffiffi
2

p

r
alâascscl

t2ðt2 � c2RÞ
f ðtÞ t2 � c2s

cl þ t

� �q Z cl

t

s� � 1
�tt�t

� �
s�ð0Þ



ð�tt2 � c2RÞ�tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tt2 � c2s

p ffiffiffiffiffiffiffiffiffiffiffiffi
cl � �tt

p

ffiffiffiffiffiffiffiffiffiffiffi
�tt � t

p
16ðc2l � �tt2Þð�tt2 � c2s Þ þ c2l c2s 2� �tt2

c2s

� �4
 � Z t�tt�t
�tt

0

t

 
� �ttt0

�tt � t

!q�1

_ggðt0Þdt0 d�tt: ð18Þ

Let us consider the special case where function gðt0Þ changes in proportion to the power of t0, namely

gðt0Þ ¼ Ata0 (a > 0), with A and a being parameters characterizing the strength and time history of the point

force loading. Accordingly, the time integration in Eq. (18) can be evaluated explicitly as

K ¼ 16

p

ffiffiffi
2

p

r
alâascscl

t2ðt2 � c2RÞ
f ðtÞ t2 � c2s

cl þ t

� �q

Aa
CðqÞCðaÞ
Cðqþ aÞ t

qþa�1



Z cl

t

s� � 1
�tt�t

� �
s�ð0Þ

ð�tt2 � c2RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tt2 � c2s

p ffiffiffiffiffiffiffiffiffiffiffiffi
cl � �tt

p
�tt1�að�tt � tÞa�1=2

16ðc2l � �tt2Þð�tt2 � c2s Þ þ c2l c2s 2� �tt2

c2s

� �4 d�tt: ð19Þ

The physical significance of this solution is an appreciation for the effect on the stress intensity factor for
an intersonically propagating crack by the time history of the applied point force. When the power index a
is greater than 1� q, the strength of the crack tip stress intensity factor K is monotonically increasing.
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When the power index a is less than 1� q, the strength of the crack tip stress intensity factor K is

monotonically decreasing. The most interesting case is for maintaining the power index a as 1� q. The
stress intensity factor K becomes constant, ideal for steady intersonic crack growth

K ¼ 16

p

ffiffiffi
2

p

r
alâascscl

t2ðt2 � c2RÞ
f ðtÞ t2 � c2s

cl þ t

� �q

Aa
p

sinðqpÞ



Z cl

t

s� � 1
�tt�t

� �
s�ð0Þ

ð�tt2 � c2RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tt2 � c2s

p ffiffiffiffiffiffiffiffiffiffiffiffi
cl � �tt

p
�ttqð�tt � tÞ1=2�q

16ðc2l � �tt2Þð�tt2 � c2s Þ þ c2l c2s 2� �tt2

c2s

� �4 d�tt: ð20Þ

That would provide a loading pattern at a fixed loading point to maintain a constant stress intensity

factor for the complete history of the intersonic crack propagation. Since the intersonic crack singularity q
depends on the speed and is peaked at

ffiffiffi
2

p
cs, the power index q to maintaining constant stress intensity

factor also depends on the propagation speed. The farther the cracking speed is from
ffiffiffi
2

p
cs, the smaller the

value of q, and the larger the required value of power index a to maintain constant stress intensity factor.

4. Concluding remarks

We have achieved the following goals in the present study.

I. We have obtained the fundamental solution for intersonic shear crack propagation subjected to arbi-

trary time-dependent crack-face loadings. This is achieved by the superposition of the Lamb problem

for a concentrated force on the boundary of a half plane and the moving dislocation solution.

II. For the arbitrary, time-dependent loading on faces of an intersonic crack, we have found the analytic

expression of the stress intensity factor for the intersonic shear crack. Several examples of the crack-face

loadings are presented to illustrate our approach and the results.

It should be pointed out that the proposed approach to superpose the Lamb problem with the moving

dislocation solution can also be applied straightforwardly to subsonic crack propagation.
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